
Utilizing Minecraft Bots to Optimize Game Server
Performance and Deployment

Matt Cocar, Reneisha Harris and Youry Khmelevsky
Computer Science Department, Okanagan College

Kelowna, BC V1Y 4X8, Canada
Emails: fmatt.cocar, reneisha.harrisg@gmail.com, ykhmelevsky@okanagan.bc.ca

Abstract—To simulate a realistic game server environment,
we utilized open source software libraries to create automated
players (bots) for the globally renowned online game: Minecraft.
The fairly simple design of the Minecraft server as well as its
massive development and support community facilitates consid-
erable research and analysis prospects. As such, the goal of our
investigation was to emulate and then analyze the real-world
stress that game-players actively create on hosting servers. We
achieved this through creating scripted movements of Minecraft
characters that are connected to the Minecraft server(s) hosted
within our virtual infrastructure. After this was achieved, we
explored altering the methods of running the active Minecraft
servers to control CPU load; we primarily explored manually
setting the CPU affinity of the Minecraft server thread to run on
specific virtual cores. Collecting CPU workload data while the
bots were running around on our servers gave us consistent and
predictable readings that confirmed the success of our methods
we used to control performance. Evidence of this is illustrated
through the use of graphs and other experimental data outlined
in the body of this document.

I. INTRODUCTION

In early 2014, students of Okanagan College chose to
experiment with locally hosted Minecraft servers and custom
designed bots that used libraries from a community developed
protocol implementation named MCProtocolLib [1]. Because
Minecraft’s architecture is well documented and its community
is rich with developer support, it was a prime candidate for
experimentation with custom developed tools. Also, players
can download the server application so they can host their
own worlds, which means we have total control over the
infrastructure it runs on.

In this paper we control the Minecraft server threads to
expose how scaling from one server to ten servers increases
load across the system. To start, we will examine the infras-
tructure of our environment; it was set up as a virtual network
between the server and client(s). In this infrastructure, we have
the following configuration: One virtual machine that is used
to host the Minecraft servers, and several virtual machines
those are used to run bots for every two Minecraft servers.

Each Minecraft server hosts 25 bots, so this translates into
one virtual machine running a total of 50 bots. Following
from this, testing was done on a total of 10 Minecraft servers.
Therefore, this utilized resources of 5 virtual machines. For
our evaluations, this gave a semi-accurate representation of
real-world players that are on separate hosts and connecting

Fig. 1. Current Infrastructure Diagram

to a Minecraft server. The configuration also helps the bots to
run more smoothly due to spreading out their workload.

The following section has details outlining simulation tools
that are currently used to evaluate game performance (see
Section II). We then go on to provide a detailed illustration
of the set-up of our experimental infrastructure. Accompa-
nying this is a discussion of the results obtained through
our performance analysis which also includes data collection,
measurements and their associated interpretations. Section III
of this document outlines the details of the bot design and its
associated applications in our Minecraft server performance
analysis. In Section IV, we go on further to discuss the
deployment of the Minecraft servers and then in Section V
we discuss the process of automating and optimizing the Bot
for testing. Section IX outlines our future plans and Section
X summarizes our research results.

II. EXISTING WORKS

The previous research comprised an investigation into the
maximum possible workload that could persist on CentOS 6.5

2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)

978-1-5090-5538-8/17/$31.00 ©2017 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:41 UTC from IEEE Xplore. Restrictions apply.

and CentOS 7.0 virtual servers; this workload consisted of our
custom Java-based bots [1].

There are some discussion by authors surrounding inter-
active online games, with particular focus on “First Person
Shooters” (FPS) genre [2], [3] and the accompanying network
traffic for these games [4]. Their investigations explore the
impact of the network on the games and also looks at realistic
traffic generators.

A technical report obtained from IBM [5] demonstrates that
“rapid system response time, ultimately reaching sub-second
values and implemented with adequate system support, offers
the promise of substantial improvements in user productivity”.
It is “better to implement sub-second system response for
their own online systems” and usually computers are not
well balanced. The system response time was divided in two
categories that were deciphered as critical components such
as communication time and computer response time.

cloned. Simply copying the entire folder and renaming it
creates the clones.

� Lastly, the new clones need to have their server.properties
altered by setting server-port to a different port than the
other servers. The firewall has to have all of those ports
open for bots or players to connect.

V. AUTOMATING AND OPTIMIZING THE BOT FOR TESTING

Two BASH scripts were written to automate spawning and
de-spawning the bots. Early tests results showed that if we
used only one NodeJS process to spawn bots, they would
misbehave by not always turning when they were supposed
to, or sometimes they would delay for a few seconds and

Now, the Minecraft server thread is running only on CPU
0. This process is repeated for every Minecraft server after
startup using subsequent virtual cores. It should be noted that
there are other threads involved in the JVM stack, like garbage
collection and socket connections, which is still managed
automatically. Only the server thread is affected, since we
suspect that it creates the most workload.

VII. COLLECTING HOST WORKLOAD DATA

The monitoring tool used to gather data is sar from the
sysstat package. Our sar configuration is set to poll for data
every 1 second for 40 seconds. The sar output file is in
an unreadable object format, so using sadf, the formatter, is
necessary to create Comma Separated Value records for easy
parsing and/or importing into DBMS. An example of output:

1 . # hos tname ; i n t e r v a l ; t imes t amp ;CPU;% u s e r ;
%n i c e ;% sys tem ;% i o w a i t ;% s t e a l ;% i d l e
2 . 0 0 . g a m e s e r v e r . SysCon2017 ;1;2017�02�09
2 3 : 1 0 : 1 9 UTC ; 0 ; 0 . 0 0 ; 0 . 0 0 ; 0 . 0 0 ; 0 . 0 0 ; 0 . 0 0 ;
100 .00
3

The testing and data collecting process happens each time
a server is added, with 25 bots spawned on all servers.

VIII. HOSTING MACHINE PERFORMANCE ANALYSIS

The goal of this experiment was to collect CPU workload
data of server hosts that are running multiple, active Minecraft
servers. That is, Minecraft servers with 25 players connected
to each of them. Our attempts at controlling the workload
generated from these game servers is graphically depicted
below.

Fig. 2. No Minecraft servers running. It represents our host while it is
completely idle (the baseline).

First, we show a baseline graph. It shows workload data of
the host with no Minecraft servers running. Pay attention to
the y-axis scaling, as the bar heights are slightly misleading
at first glance.

Fig. 3 clearly demonstrates that our attempt at controlling
workload of the Minecraft servers is successful. It shows
that our first server, which has its affinity set to virtual core
0 (represented as 1 in the figure), is creating much more
workload on that core than the rest of the cores. There are

Fig. 3. 1 Minecraft server thread running on virtual core 1.

Fig. 4. 5 Minecraft server threads running on separate virtual cores 1 to 5.

interesting sections of the graph from virtual cores 13-20 and
30-32 that starts appearing in this test and subsequent tests.
There is uncontrolled workload apparent in these sections.

Halfway through our tests, depicted in Fig. 4, our control-
ling efforts remain successful. The workload from controlled
servers on their virtual cores is much higher than the rest of
the cores. Although, the interesting trend discovered within
the last graph is now more evident. All of the uncontrolled
virtual cores have a much higher load when compared with
previous tests. Uncontrolled cores 13-17 and 30-32 still have
the most outstanding readings.

Our final test (Fig. 5) shows more of the same. However,

Fig. 5. 10 Minecraft server threads running on separate virtual cores 1 to 10.

2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. System workload during each test configuration (10 in total), and the baseline for a point of reference.

uncontrolled cores are now displaying a substantial amount of
load, even when compared to controlled cores. The average
load of uncontrolled cores is 30.43%, while controlled cores
average 64.45%.

A forest graph (Fig. 6) was created to show contrast between
all test configurations. The uncontrolled cores display an
upward trend of workload as the number of active Minecraft
servers increases. The middle and end sections of the cores
discussed previously still have unusually high workloads when
compared to others of the same nature. However, they too
display the same upward trend. These uncontrolled workloads
were consistent throughout the polling of CPU data. For
example, average standard error of the readings of uncontrolled

