
A Survey of Natural Language Processing
Implementation for Data Query Systems

Albert Wong
Mathematics and Statistics

Langara College
Vancouver, Canada

0000-0002-0669-4352

Dakota Joiner
Computer Science
Okanagan College
Kelowna, Canada

0000-0002-3094-0015

Chunyin Chiu
Mathematics and Statistics

Langara College
Vancouver, Canada

0000-0002-5932-5390

Mohamed Elsayed
Mathematics and Statistics

Langara College
Vancouver, Canada

0000-0002-7624-6117

Keegan Pereira
Computer Science
Okanagan College
Kelowna, Canada

0000-0002-2893-3406

Youry Khmelevsky
Computer Science
Okanagan College
Kelowna, Canada

0000-0002-6837-3490

Joe Mahony
Research and Development

Harris SmartWorks
Ottawa, Canada

JMahony@harriscomputer.com

Abstract—With increasing complexity and volume of collected
data continuing to rise, it is becoming ever more important to
develop systems with high interactability. Businesses with an
interest in big data continue to seek solutions that limit cost while
providing effective, simplified solutions to current issues in data
retrieval. Combined analysis and application of a multi-factorial
system will likely lead to promising results in ease of reporting of

data query systems. Through the review, it will be able to
identify and appreciate the various issues involved in such
efforts as well as the ideas and tools currently available. We
also briefly review the work on the building of a DW in support
of the NLP implementation. Unless explicitly stated otherwise,
NLP is discussed here under the guise of applied machine
learning for Energy Information Systems.

II. A

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:27:38 UTC from IEEE Xplore. Restrictions apply.

word embedding layer can provide word association and sim-
ilarity to the deep learning model before any training process.
Vathsala shows that using “a pre-trained word embedding layer
(GloVe)” [32] can improve the accuracy rate by around 3%
[33]. Instead of using word embedding layer, some researchers
also considered a BERT [34] pre-trained layer as a first layer
[12], [13], [19], [26], [35]. Pal in [36] used another optimized
BERT layer – RoBERTa instead of just the original one.

Most of the papers focus on the database query generation
based on one single natural language query. Zhang developed
a database query generation model which can consider mul-
tiple natural language queries, previously generated queries,
and the database schema with separate encoders [35]. This
model utilizes turn attention to store the hidden state of the
historical messages and generates a new database query based
on previous messages and the new message.

2) Input and Output Adjustment of the Machine Learning
Algorithms: Authorths in [23] showed that there is a need
for a pre-processing step on the natural language query. Guo
classified the tokenized words into groupings related to either
table names, column names, or values. Brunner classified the
token into five groups: table, column, value, aggregation, and
superlative. Apart from this, the database elements (table and
column) are also classified whether they are an exact match,
partial match, or value candidate match with the tokenized
words [24]. In both papers, the classified result becomes a part
of the input of their algorithms to generate an intermediate
representation that shows the linkage between the natural
language query and database query, called SemQL [23]. Other
than scanning the whole database, Ma [26] suggested using
an aligner, an unsupervised learning method served as an
automated annotator for the classification of tokens.

Apart from using a natural language query as input, re-
searchers also want ML algorithms to consider database ele-
ments in order to develop queries that can select the correct
target column. The most common method is to use the column
names as a part of input [12]–[14], [20], [25], [26]. However,
this method is only suitable for data sets that have a single
table. In reality, databases contain large amounts of data
employing complicated schema with multi-table structures.
Therefore, research suggests making the ML models learn the
entire structure of the targeted databases. Bogin utilized “a
graph neural network (GNN)” [37] to process the database
schema and make the algorithm generate a database query with
join-clause [22]. To increase the quality of generated database
queries, Wang suggests an execution guidance mechanism
[38]. The mechanism serves as an output monitor of the
generated database queries. It can detect and reject some non-
executable queries in the middle of the decoding process. His
work shows that this mechanism can improve the accuracy of
currently existing algorithms up to 6.4% higher.

III. DISCUSSION OF EXISTING MACHINE LEARNING
SOLUTIONS IN INDUSTRY

The ML approach to convert a NL query to a database
language such as Structured Query Language (SQL) is a

considerable development from the normal semantic approach
[15], [17]. Different deep learning models such as SQLNet
[14], Seq2SQL [20], SyntaxSQLNet [21] and F-SemtoSQL
[19] were used on different datasets such as WikiSQL, Spider,
Geo and ATIS and will be discussed in the following.

One notable artificial neural network approach to resolve the
problem of converting NL to SQL is to use an encoder-decoder
architecture to compete against semantic analyzers [17].

Seq2SQL is “a deep neural network architecture” that is
associated with a rule-based reinforcement learning algorithm.
It is formed using three parts: “the aggregation operator,
the SELECT column, and the WHERE clause”. Models are
built using PyTorch and the training is supervised using
reinforcement learning that rewards the decoder when one of
the serializations is produced. “This type of model has shown
to produce very limited results” [17].

Mellah et al. [17] mentioned SQLNet, suggested by [14],
a model which utilizes a sketch-based architecture and takes
the “structure of an SQL query, and generates it from a
dependency scheme”. This approach can provide a higher level
of accuracy (by 9% to 13%) than older techniques on the
WikiSQL dataset.

Mellah et al. [17] also mentioned another model, TypeSQL,
that was suggested by Yu et al [39]. This model again utilizes a
“sketch-based approach and treats the task as a slot filling one
by grouping various slotng th445(s415(th44ln0Hr4E1u5(ario%uip-445o41ween)-58 0 -11.955 Td [(archttri0(uilt)-54.)-247(35is)-247(35iel)-247(3s)-245(35i3.5%47(35iel-287(35iurac)1-240(3han)-494(35i)-294(35LNet)]TJ 0 -11.955 Td [([14el)-401(w6d)-404(Oecod(es,io%tes)-574(Oec-400(c6pro)15(v)15(e)-3t)-403(on)-476(Oec-rac)15(y)-495(on)-404(t6(2TJ 0 -11.955 Td [([33-49461423the)-59261420(ikiSQL)-350613taset.)]926142rnih44ln06to)-4156to)a946142315(t-2476142vismed)e)-56 0 -11.956 Td [(thero)15(v)15(e)-3t)-403(of)-350(tok5.5%4.)-24 9.962 -11.955 Td [(Seq2axSQLNet)-4876241])-4886241-621(some)lv)-621(i4e)-620(t3oblem)-245(i4eh)-279(i4eher)-J -9.962 -11.955 Td [(a)-e5(fer2cial)y x7577m g7mpross-blem g7mdom g7mt5(x)15t-to-

dataset has limited uses for developing practical ML models
as it includes “queries with only one column for the SELECT
clause and one table in the FROM clause”. However, it has
been used often in NLP and ML research.

3) GeoQuery: Geoquery, or GEO, is a small dataset that
contains information on the geography of the United States,
such as states, cities, rivers, and mountains [43]. According to
the Computer Science department at the University of Texas,
the dataset contains 880 queries in NL and the corresponding
queries in a formal query language. It is considered a fixed-
schema dataset that can be used for the development of ML
models for complex and composite queries over a closed
domain [19].

4) ATIS: ATIS is commonly used to evaluate semantic
analysis systems [44]. This dataset contains two subsets for
training and two for testing. It is also considered as a fixed-
schema dataset similar to Geoquery [19].

5) SParC: SParC is a dataset that has context-dependent
queries under a cross-domain setting based on Spider [42],
[45]. The semantic meaning of the latest queries are dependent
on the previous query in a context-dependent querying domain.
Interestingly, ATIS [44] is also a context-dependent data set,
but it is limited to a specific flight database domain. SParC
provides context-dependent queries with 200 databases and
its complexity is considerably higher than that of ATIS.

V. DW AND NLP INTEGRATION

A. NLP use for Database Search Current State

Much of the current state of applied NLP use with database
and DW systems occurs in the medical field. Electronic
medical records and the databases in which they are stored are
scanned using NLP algorithms to aid in differential diagnosis
of patients presenting with potentially unclear pathologies. The
use of NLP has aided in diagnosing fatty liver disease [46] and
identifying smoking status [47], among others. Researchers
often choose to use the designed-for-medicine analytical algo-
rithms “CLAMP (Clinical Language Annotation, Modeling,
and Processing)” [48] and “cTAKES (clinical Text Analysis
and Knowledge Extraction System)” [49]. Frequently, these
tools are used together to produce actionable results. Each
builds from an ML basis with tactics discussed earlier in-
cluding a sentence boundary detector, tokenizer, part-of-speech
tagger, a parser, and an encoder. CLAMP, as the newer proce-
dure, expands on these further with additional functionality in
recognizing acronyms and shorthand, assertion and negation
detection, and a complicated rules engine allowing the user to
define their own rules to fine tune searching, querying, and
performance. Though the structure of medical databases, data
warehouses, and electronic medical records vary drastically
from classical database structures, the impact and implication
of applied ML affords support for pathways of development
in many other fields.

Outside of the medical industry, there have been devel-
opments in NLP in a handful of other areas. O’Halloran,
Pal, and Jin [50] have worked together to utilize NLP tools
in a multimodal analytical platform to scrape and analyze

information from many media websites including Facebook,
Twitter, and Reddit, among others. Rather than using NLP to
translate text to SQL, their work aims to allow for the use of
NLP as a tool to more accurately associate text to other related
multimedia formats. Wei, Trummer, and Anderson of Cornell
University [51], [52] have put forward interesting research
this year where they aim to not only optimally translate text

Both the P-HYBRIDJOIN and QaS-HYBRIDJOIN result in
approximately three orders of magnitude higher tuple uploads
per second (7x106 and 8x106, respectively) over previously
identified optimized hybrid join methods from the literature.
The observed increase results from decreasing I/O cost through
dissolution of interdependent processes on the disk buffer
loading and probing phases. More simply, a multi-disk buffer
facilitates parallel loading resulting in reduced I/O cost.

C. NLP to SQL Code Generation

There seems to be great difficulty in fully correct NLP
translation, but several groups, including Li [19], Karthik [57],
and Vathsala [33], have been working to develop systems that
more accurately translate spoken or written text into executable
SQL statements that retrieve the correct and desired data. As
described above, Li et al. have worked recently to develop F-
SemtoSQL, a slot-filling method where relationships between
attributes are captured “by grouping the different slots in a
graph dependency way” [19]. As has been recognized in many
NLP tasks, most spoken sentences or statements are filled
with words that are not used or are not relevant to building
out an SQL query. To minimize an potential interference by

Language Processing, Proceedings of the Conference, 1724–1734. https:
//arxiv.org/abs/1406.1078v3.

[30] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Se-
quence Learning with Neural Networks. Advances in Neural Information
Processing Systems, 4(January), 3104–3112. https://arxiv.org/abs/1409.
3215v3.

[31] Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective approaches

